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ABSTRACT

The functional view of resilience recognizes the complexity of interacting elements across related biological systems. 
Modern environments are characterized by many novel stressors that were rarely if ever encountered by humans 
before the Industrial Revolution, and these stressors likely interact in complex ways that determine health outcomes. 
Studies of individual stressors, or a small subset of stressors, cannot reveal the cumulative effects of a large suite of 
stressors, especially when health outcomes are themselves multifactor variables, so methods for studying synergistic 
interactions in complex systems are needed. The CHIRP (Child Health Inventory for Resilience and Prevention) Survey 
is a comprehensive instrument for inventorying potential stressors and for assessing whole-child health and resilience; 
but, like any large health and lifestyle survey, discovering patterns depends on the reliability of interpretive analytics. 
Data aggregation is commonly used in health research, especially in cumulative impact studies where many stressors 
contribute to multifaceted health outcomes, but aggregation methods rarely incorporate empirical integrity assessments. 



We previously reported on a novel system for aggregating data into hierarchically structured indices purpose-built for 
studying synergistic effects among and between large, strati昀椀ed sets of potential environmental stressors and complex 
health outcomes (Nelson, et al., 2020). Our hierarchically structured indices effectively revealed cumulative correlations, 
supporting a “Total Load” model of chronic disease in children, but indices are hypotheses about relationships that 
need to be tested. To understand and optimize the effectiveness of data aggregation by our method, we systematically 
studied component data elements using predictive modeling approaches. Here we present and demonstrate our 
methods for systematically de-aggregating indexed data to fully interrogate its hierarchical structure and quantify the 
contributions of strati昀椀ed data elements to various health outcomes. These modeling methods offer deep insight into 
synergistic couplings of many seemingly independent variables and allow indices to be empirically optimized across 
multiple outcome variables. 

BACKGROUND AND INTRODUCTION

Biological systems are resilient because they are characterized by vast and intricate hierarchies of structure and function. 
The health of an organism—its performance—is consequently extremely complex and strati昀椀ed, depending on many 
layers of optimized function. Understanding such systems requires nonlinear thinking about many tiers of organization, so 
a generalized comprehension of biological logistics has often remained out of reach for researchers, who naturally prefer 
to investigate tractable systems.

This de昀椀cit is profound when we contemplate our need to understand health. In the face of skyrocketing chronic health 
conditions, the urgency to make crucial connections cannot be overstated. Modern environments are so saturated with 
chemical, physical, and social stressors that understanding which ones contribute to declining health is a monumental feat.

The problem is manifold, but one area where progress can and has been made is in reducing many variables into a few. 
We have several methods for accomplishing this reduction, but we must usually grapple with a trade-off. How much 
information—and thus understanding—is lost in the process of condensing many variables into one? Whether we use 
statistical factor reductions or data aggregation methods, the answer is almost never known. If we are to optimize our 
environment, or at least improve it, we need to understand how multitudes of potential stressors interact so we might 
compensate for important losses of information.

A related issue is the question of what exactly is being represented in reduced variables. We hope that we are actually 
capturing a hidden variable, one that we cannot measure directly, but which materializes somewhere in the operations 
we perform when reducing variables to manageable proxies. Unfortunately, the notion that our aggregated data faithfully 
render the hidden variation can rarely be tested. We have an interest in remediating this de昀椀cit.

Machine learning and arti昀椀cial intelligence (AI) offer a means to make real progress toward understanding complex 
systems and these useful algorithms are already widely used in clinical and research contexts. Large health data sets are 
often aggregated into indices, which are usually constructed based on logical relationships (those that make clinical or 
scienti昀椀c sense). Often these relationships are so complex that we have no easy way of interrogating them to test their 
veracity (to validate them). It is important to remember that indices derived non-empirically are hypotheses that need to 
be tested before we rely on them to support scienti昀椀c conclusions.

Here we offer a preview of methods we are developing to interrogate indexed data from a comprehensive survey of 
children’s health, the CHIRP (Child Health Inventory for Resilience and Prevention) Survey. We previously reported on the 
construction and utility of our data indexing system (Nelson, et al., 2020). The clinically informed indices we generated 
are presently subjected to systematic deconstruction and characterization using decision trees, an accessible machine 
learning algorithm that offers visual comprehension.

This presentation is not a tutorial, but rather a methodological expose of one facet of the analytic procedures that we 
are developing to understand the landscape of health stressors and supports that impact the wellbeing of children and 
adults. This is an ongoing enterprise that we are happy to open-source. The urgency of understanding the crisis in public 
health is reason enough to share insights and encourage innovation from others.
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HOW TO INTERPRET OUR DECISION TREES

Decision trees are easy to read with little practice. The trees represent branching decision logic with starting and ending 
points. Unlike real trees and many other branching diagrams, decision trees are usually depicted upside down, with 
the root at the top spreading out toward leaves at the bottom. There are three types of nodes in decision trees, root, 
internal, and leaf (terminal branches). The following image shows a root node and two internal nodes.

The numbers can be in one of several formats, but in this sample and in this presentation the numbers in all nodes are 
read as follows:

1.  The top number is the reference for the binary condition for which the branching logic was generated. 0 = absent and 
1 = present. The nodes are conveniently colored to depict the reference number that is dominant at the node, with 
blue corresponding to zero and green denoting one. In our examples 1 = presence of gastric re昀氀ux diagnosis.

2.  The number on the left of the slash represents the number of cases that do not correspond to the reference number, 
so for the root node above there are 19 that are not zero (=19 ones).

3. The number right of the slash is the number of total cases of both ones and zeros at the node.

Below the root and internal nodes is a conditional statement, and this is the only tricky part of the diagram. To 
understand the decision point correctly, one must correctly interpret the logical statement. In the example above The 
logic says that the “AntibioticIndx” parameter is less than 0.62--easy enough--but then there is a left side labeled “yes” 
and a right side labeled “no”. For the trees we present, the yes and no labels are always oriented in the same direction.

The tricky part is in understanding which side is high and which is low. For a greater than symbol (>), the yes represents the 
high side (is it greater than x? Yes it is greater than x). If, however, the logical statements contains a less than symbol (<) the 
high and low sides are reversed. As you can see, this is not all that tricky, but it can be confusing to the uninitiated.

The leaf nodes are much like the root and internal nodes, except they do not require a logical statement. The numbers 
are read in the same way as other nodes.

The four nodes at the bottom of the image above illustrate how things work. There are 53 cases represented. In fact, 
the top node tells you this. The next node down says there are thirteen cases below that node and three for the green 
internal node. The leaf nodes at the bottom tell you (on the left of the slash) how many cases are present after the 昀椀nal 
decision has been made. The zeros on the right of the slash tell you that there are no misclassi昀椀cations (that section of 
the tree is fully resolved). If one or more of those right-side zeros were greater than one, that number would tell you how 
many misclassi昀椀ed cases were assigned to that leaf node.
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DECISION TREE MODELING 1

RESULTS 1

The 昀椀gure panels below show the changes in decision tree topology over 13 consecutive parameter deletions. These 
changes re-characterize a particularly stable node (marked with a X) and demonstrate the potentially 昀氀uid nature of 
parameter importance mesures across the entire tree. By manipulating the right-most branch, we can learn about 
parameter dependencies in the left side branching structure. As the dominant right-side parameter is deleted, we can 
observe the effect on the left side of the tree to gather information about dependencies among parameters.

For a primer on reading decision trees refer to Background and Introduction. Have 36 min to watch? Click for Video Results

Figure 1. Fourteen panels (A-N) showing deletion of the variable at the stable node marked with X. The red box 
encloses seven individual participants that cluster together throughout the demonstration.

A. The full model with all of the 32 composite parameters and factors from Table 1 (see Methods) available (not all 
parameters contribute). This demonstration spotlights a particular node marked throughout the panels with X. Seven 
participants cluster together and are bounded by a red rectangle. An index that aggregates antibiotic variables is the 
variable of greatest importance, as indicated by its position at the root node (top of tree). Note the varables that occupy 
the left-side backbone of the tree and the higer level branchings. Changes in the prominence of these variables provide 
information about the importance of and interactions between variables that is not evident in a complete, static model.

B. Model identical to A, but with Chemical Exposures Index removed. Note the circled nodes that denote the positions 
of the variable that has been newly promoted to the position marked X. The red box encloses the same participants as in 
A, but in an altered con昀椀guration.
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C. Model as in B minus mother’s Substance Use Index. Circles highlight where the newly promoted variable (Prenatal 
Medications Index) is repeated in the tree. The Excess Sugar Index showed up for the 昀椀rst time in the tree, and will 
continue to play a role. The red box did not change in this iteration. Prenatal Medications Index dominates the two 
peultimate decision points.

D. Model as in C minus Prenatal Medications Index. The newly promoted variable in the right-side branch is School 
Exposures Index. Note how persistent many of the variables are on the left. The deletion of a high-level variable caused 
global shifts in dependencies, but most of the same variables remained important. As variables are deleted, other 
variables shift around the tree, appearing and disappearing as variables gain and lose dominance over regions of the 
tree topology. Could measures of persistence during prescribed change sequences provide fresh perspectives on 
variable importance?

E. Model as in D except that the School Exposures Index has been removed. The newly promoted binary factor 
indicating presence or absence of a 昀椀rst-day-of-life vaccine appears only at the focal node, X. As we proceed, some 
variables make a brief appearance then disappear as relationships between variables change. The persistence of 
parameters provides greater con昀椀dence that those factors are robustly correlated with the condition under investigation.
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F. Model as in E minus the vaccine parameter. The newly promoted index concerns injectable medications and, 
despite its appearance near the root node, like its predecessor it appears to be of limited importance. These 昀氀eeting 
appearances underscore the value in a dynamic approach to assessing variable importance. Note again that the cases 
enclosed in the red box have not changed since the 昀椀rst parameter deletion, indicating correlated relationships with 
respect to gastric re昀氀ux diagnosis.

G. Model as in F minus Injectable Medications Index. The promoted numeric variable, Survey Age, has been present all 
along and continues to show a strong presence. This persistence might be important because, while age is sometimes an 
artifactual covariate of another variable, here it is persistent and consistent. It appears to be telling us that older children in 
this population are more susceptible to gastric re昀氀ux. Note now that the groupings in the red box have 昀椀nally changed.
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H. Model as in G but without Survey Age. The ascendant variable at the marked node is Infant Medications Frequency 
Index. This deletion had a global effect on the tree topology, but familiar variables are still informing the topology.  
The Lyme Disease factor is not informative about the re昀氀ux condition. The relationships circumscribed by the red box 
remain the same.

I. In this model, Infant Medication Frequency Index is replaced at the focal node by a similar index that aggregates 
medication variables. The high-level deletion made global changes on both sides of the tree. The red-boxed 
relationships have assumed a new con昀椀guration, but represent the original cases.

J. This model replaces Medications at birth and Electromagnetic Frequency Index rises to replace it at the focal node. 
This index is well represented in previous topologies, raising some interesting questions about the role of EMF in gastric 
health. When a variable starts out at a low level and continues to be promoted up the tree, appearing in new places as 
dependencies change, it indicates that the variable is important, but we would not know this from a static but complete 
model. The relationships in the red box are again in a new con昀椀guration.

Citation: Reiserer, Randall S., Beth Lambert, Josie Nelson, and Martha Herbert (2020). Empirical Analysis and Optimization of Indexed Data for 

Studies of Synergistic Interactions Among Multiple Stressors on Health Outcomes and Resilience in Children (Poster presentation, IFM/AIC 2021).



K. Removal of EMF Index promotes another new-comer to the focal node. The Home Environmental Index relates to 
dust mites, asbestos, radon, and other home hazards. It does not occur in the complete model, but shows up on the 
left after recent deletions, indicating that it might be more important than we would conclude without performing these 
operations. The terminal and internodal relationships in the red box repeat the topology from I above.

L. Removing Home Environmental Index promotes a familiar variable to the focal node. The Sleep Stressor Index has 
been a fairly steady player from the start. The red boxed relationships are also familiar.
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M. Removal of the Sleep Stressor Index places the Antibiotic index at both the ultimate and focal nodes. The red box still 
encompasses the same individuals, which have remained subject to the focal, X, node for 13 parameter removals, some 

of which dramatically reorganized other parts of the tree. The stability is due to the dominance of the Antibiotics Index.

N. The 14th parameter removal disintegrated the focal node and reorganized the tree in other ways. Despite deleting 
14 out of 36 variables, all terminal nodes remained resolved. We could have chosen to focus on the ultimate node, or 
any other node of interest. By selecting the right-side penultimate node, we were able to explore the dependencies 
that affected both the right and left sides of the tree. Other operations would provide different information, and by 
combining different exploratory paths, we can gain insight about the broad dependencies that in昀氀uence a health 
outcome. The alternative is to conclude whatever the complete model indicates, but we would miss details that might be 
crucial to health outcomes.

DECISION TREE MODELING 2

RESULTS 2

In the previous box, we layed out a long stepwise set of simple permutations that add a dynamic visual capability 
to estimates of variable importance. The small group we tracked had stable depenceny associated with exposure to 
antibiotics, and this dependency was strong enough to remain stabe as distributed variables were removed.

In this section we begin with the 昀椀nal diagram from the last section and show how one can drill down into a composite 
variable to reveal the individual components that comprise the aggregated data.

We selected the highest ranking variable, Genetic Variants index, comprised of 19 distinct genetic variants plus an 
“other” category.
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Figure 2. Example of variable decomposition to identify important discrete contributions from aggregated variables.

A. Decision tree model from Figure 1N, representing the 14th parameter removal. The aggregate parameter 
“GeneticVarsIndx” hold the highest ranking (is at the root node), so the aggregate variable was replaced with the 
individual gene variants (see Table 1, Methods).

B. Modeled tree after replacement of aggregate variable with discrete gene variants (binary data).

METHODS 

Here we demonstrate two features of decision trees that bear utility for characterizing the relationships between health 
parameters that interact in a hierarchical way.

First we show how a target node can be treated as the focus for manipulation. A node is considered “the same node,” 
regardless of the variable that characterizes it, if its relative position and terminal branches are stable. The internal nodes 
may change as variables are deleted at the focal node and other variables are promoted to that node, but if the node 
breaks apart or the terminal cases change, we consider the node to have disintegrated. When a node is stable across 
changes (e.g., removal from the model of the variable that resides at that node), the coherence among variables that 
get promoted to that node can be informative about the data features providing structure in that region of the tree. 
Coherence can be assessed by observing changing patterns of dependency in other parts of the tree. This procedure 
can be performed at any internal node or the root node. It is most easily interpreted when the terminal (leaf) nodes are 
resolved (i.e., fully classi昀椀ed), or when cases can be identi昀椀ed as they shift in the tree topology.
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Second, we demonstrate how decomposition of a composite variable can provide insight about that variable’s in昀氀uence 
on overall tree topology. In the case illustrated, we elected to “decompose” genetic variants. By decomposition, 
we mean that an aggregated variable is substituted in the model for its de-aggregated components. The example 
we present is uncomplicated, but similar procedures (as well as other relational operations) can be used at any node 
characterized by a composite variable.

We used the statistical software R (R Core Team, 2013) and the package rpart (Therneau and Atkinson, 2019) to construct 
decision trees. Data were either binary, ranked, or numeric, but all were scaled to the range 0-1. Index structure and 
construction, as well as the instrument, is described elsewhere (Nelson, et al. 2020). Brie昀氀y, the structure of indices 
re昀氀ect natural hierarchies in the structure of health data. Many of the survey questions capture a binary response (yes/
no, present/absent), but they belong to logical categories such that many binary questions can be aggregated into a 
numeric index. Other questions were Likert-style ranked responses, or time-referencing responses, and still others were 
numeric before aggregation. The scaling step was used to render all variables equivalent at a given level of aggregation. 
While there was clinically derived logic in the hierarchical structuring of components (questions, scores, subindices, and 
indices), this type of aggregation is clearly a hypothesis. The methods herein were formulated to examine explicitly 
hierarchical hypotheses.

The analysis began with stressor-variable subindices, high-level components comprised of two to four levels of 
integration, as well as other variables deemed likely to covary with stressors (see Table 1). The dependent variable was 
presence vs. absence of gastric re昀氀ux. Gene variants were initially aggregated into the variable named “GenetVarsIndx,” 
and only incorporated into the model for last analysis.

Decision trees were generated using the rpart package in R, with model parameters set to maximize resolution at leaf 
nodes (unless noted). The complete model included all composite variables and all factors except for individual genes. 
Variables were then excluded from the model one at a time, starting with the penultimate variable in the selected branch 
(right-most branch in trees). This branch characterized seven participants, four of whom had been diagnosed with gastric 
re昀氀ux. Upon deletion of the target variable, the algorithm was rerun with no additional changes and the output graph 
was captured for further analysis (see Decision Tree Modeling section). This selective variable deletion was used to 
assess the associations between variables and detect relative dependencies among variables by examining changes in 
dependencies and variable prevalence in the rest of the tree.

Variables often appeared at more than one node in the tree. The criterion for deletion, however, was the presence of a 
particular variable at the selected node (upper right of the tree). As long as any variable characterized the selected node, 
the deletion routine continued, but when the node disappeared (i.e., the tree structure became fundamentally rearranged), 
the deletion routine was halted. Another halt criterion speci昀椀ed that no misclassi昀椀cations could occur in the tree. That is, 
all terminal (leaf) nodes (those at the bottom of the tree) had to be fully resolved. This halt criterion was not met, as all leaf 
nodes remained resolved throughout the deletion routine (i.e., the 昀椀rst criterion was met before the second occurred).

Decision trees used the GINI index to rank variable importance. These  values can be recovered from the rpart model. 
The GINI values are speci昀椀c to the modeled nodes, so they must be systematically gathered for each tree generated. 
We did not include them here, but they can be used to characterize relative changes in parameter importance within and 
between similar trees. GINI values can, therefore, be used to automate this analysis.

For this presentation, the 昀椀nal tree was generated by substituting the composite variable GenetVarsIndx (genetic variants 
index) for all of the individual genetic variants to see which genes were in昀氀uencing the tree topology.

Note: We are careful in our interpretations, so because our sample was relatively small (366) we do not make any claims 
about the reliability of the results displayed. The data were used for demonstration purposes. The CHIRP Study is ongoing 
and we expect to generate robust results as additional data are gathered. Nevertheless, we consider decision tree models 
to be more reliable toward the root node (top node), especially when large samples characterize a given node. Generally, 
the top half of a tree is more reliable than the bottom half, because sample sizes decrease toward the leaf nodes. 
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 Table 1. Variables used in decision tree analysis. Variables were included or excluded depending on analysis objectives.

CONCLUSIONS

Rather than using standard statistical factoring methods to discard all but the most robust relationships and associations, 
we are interested in the synergies that potentially reside in the deep recesses of large data sets.

If we hope to attain a comprehensive understanding of biology, health, economics, and other hierarchically organized 
complex systems, we need to stop discarding data in pursuit of expedient results. The good news is that researchers 
have begun to mine rather than scrape their data sets, and machine learning has made these advances possible.

In our 昀椀rst demonstration we, delved deep into a single node that robustly characterized a total of seven individuals. This 
node was stabilized by high exposure to antibiotics, and the Antibiotic Index dominated the entire tree.

Other relationships that appeared important include chemical exposures both pre- and post-natally, pre- and post-
natal medications, substance use by mothers, electromagnetic radiation, Home hazards, sleep stressors, antibiotics and 
genetic variants. The operations we performed using rules for the focal node told us more about the rest of the tree than 
about the small sample under the focal node. We were able to observe how removal of parameters that we knew were 
of penultimate importance on the right shuf昀氀ed parameters in the whole tree. In addition to assessing the dynamics of 
variables originally present on the left side of the decision tree, we detected variables that were not in the complete 
model. For example, school-related exposures, home environmental exposures, and excess sugar appeared enough to 
warrant curiosity and further study.



As much as we might learn from the explicit associations, we seem also to have lessons to learn from aggregate variables 
that apparently do not in昀氀uence gastric re昀氀ux in children. One of the biggest surprises was that our Fast Food Index was 
silent on a GI disorder, and body weight diagnoses were nearly as quiet. Only one weight-related variable showed up in 
the analysis (Diagnosed Underweight), and it only appeared when individual genetic variants were considered.

Concerning genetic associations, the vitamin D receptor gene might predispose children to GI problems, and two other 
genes, MTHFR (which appears to be associated with underweight diagnoses) and MAO deserve further scrutiny.

A next logical move might be to reassemble the stripped model in a stepwise fashion, leaving the genetic variants 
decomposed. We could also add the variables back to a model in reverse of the deletion order, or just add each back 
independently to see how they get distributed in the tree without the dependencies from other deleted variables.  
The R programming language makes such operations quite accessible and we plan to add automated steps in the future.

The methods we presented lend themselves well to automations. In the future, we might be able to strip and reassemble 
aggregated indices in minutes to reveal a web of causal and associative interconnectivity.

If you have read this far, you see some of the potential we see and you want to know more about where this type of 
analysis might lead. Imagine a system that automatically completes the operations we demonstrated, but records in 
a database the ranks, dependencies, sample sizes, and number of occurrences of variables across a series of speci昀椀c 
manipulations. The program might systematically expand and delete nodes in a decision model while writing metadata 
about each parameter that meets performance criteria. Then, it might use those measurements to perform a network 
analysis on the strengths of associations for all parameters that made it into the manipulated model. It could display the 
parameter importance using variable-sized circles, for example, with thick connecting lines between highly associated 
parameters. It might be programmed to identify super-associations based on threshold criteria and to organize them into 
domains. With such a system, we could readily assess truly complex sets of dependencies, and perhaps begin to get a 
handle on complex health problems.

One thing strikes us as certain: if we continue to throw data away because it failed to make it into the kitchen sink model, 
we will only ever identify the strongest signals and we will lose sight of the other factors that accumulate to threshold 
levels of synergy. After all, what is resilience if not remaining north of a threshold de昀椀ned by many important synergies.
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ABSTRACT

The functional view of resilience recognizes the complexity of interacting elements across related biological systems. 
Modern environments are characterized by many novel stressors that were rarely if ever encountered by humans 
before the Industrial Revolution, and these stressors likely interact in complex ways that determine health outcomes. 
Studies of individual stressors, or a small subset of stressors, cannot reveal the cumulative effects of a large suite of 
stressors, especially when health outcomes are themselves multifactor variables, so methods for studying synergistic 
interactions in complex systems are needed. The CHIRP (Child Health Inventory for Resilience and Prevention) Survey 
is a comprehensive instrument for inventorying potential stressors and for assessing whole-child health and resilience, 
but, like any large health and lifestyle survey, discovering patterns depends on the reliability of interpretive analytics. 
Data aggregation is commonly used in health research, especially in cumulative impact studies where many stressors 
contribute to multifaceted health outcomes, but aggregation methods rarely incorporate empirical integrity assessments. 
We previously reported on a novel system for aggregating data into hierarchically structured indices purpose-built for 
studying synergistic effects among and between large, strati昀椀ed sets of potential environmental stressors and complex 
health outcomes (Nelson, et al., 2020). Our hierarchically structured indices effectively revealed cumulative correlations, 
supporting a “Total Load” model of chronic disease in children, but indices are hypotheses about relationships that 
need to be tested. To understand and optimize the effectiveness of data aggregation by our method, we systematically 
studied component data elements using predictive modeling approaches. Here we present and demonstrate our 
methods for systematically de-aggregating indexed data to fully interrogate its hierarchical structure and quantify the 
contributions of strati昀椀ed data elements to various health outcomes. These modeling methods offer deep insight into 
synergistic couplings of many seemingly independent variables and allow indices to be empirically optimized across 
multiple outcome variables.
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